Technological advancements are driving seismic shifts across various industries, with the healthcare sector being no exception. The US healthcare Revenue Cycle Management (RCM) market, encompassing patient intake and revenue management from initial contact to final payment, has made significant strides in patient data analysis with the integration of Artificial Intelligence (AI) and analytics.
These technologies are revolutionizing diverse areas such as medical transcription, coding, claims processing, fraud detection, payment estimations, and denial management among others. This article will explore the significant role that AI and analytics play in the RCM market, examining their value for healthcare providers and payers, and looking ahead to future innovations. The common theme? Maximizing profits and processing efficiency without compromising on patient care standards.
AI and Analytics in RCM
In the US RCM market, robotic process automation (RPA), a form of AI, is deployed to automate repetitive tasks, such as data entry and processing. More advanced AI can analyze and contextualize vast data volumes identifying trends and patterns that might be time-consuming for humans to identify. These trends include those associated with patient or payer behavior, payment patterns, and claim status.
Although both RPA and ML can identify patterns, their primary function is to enhance accuracy and speed, rather than suggesting future actions. A study by Change Healthcare shows that two thirds of healthcare facilities and health systems use AI to assist their revenue cycles, with 72% of respondents saying their organizations use AI applications for eligibility and benefit verification and 64% for payment estimation. The 2022 State of Revenue Integrity Survey by the National Association of Healthcare Revenue Integrity (NAHRI) highlights numerous other AI-driven areas in RCM, including charge description master (CDM) maintenance, charge capture, denial management, payer contract management, physician credentialing, and claim auditing.
Transforming Transcription, Coding, and Predictive Analysis
Some of the most significant uses of AI and analytics in RCM are in medical transcription, coding, claims processing, fraud detection, and predictive analysis. Coupling conversational AI and natural language processing (NLP) coupled with machine learning (ML) has freed up more than 15% of physicians' and clinicians' time previously spent dictating medical records to transcriptionists, allowing them to focus more on patient care.
AI algorithms analyze claims data to identify patterns and anomalies that suggest corrective actions to be taken upstream, decreasing rejections and denials, improving both first-pass yield and cost to collect. In a reimagined claim production process, this feature will evolve constantly and move towards a zero-touch claims payment process, significantly reducing the time and effort required to identify errors and flag claims needing further human review.
The advancement of automation across various areas of RCM will continue, especially in medical transcription, medical coding, and clinical documentation improvement. However, human involvement will remain crucial to ensure the highest quality of care and compliant reimbursement documentation.
Advantages for Patients, Too
In the field of patient engagement, AI-powered chatbots help patients navigate the payment process by answering their questions and providing real-time assistance. Additionally, AI and analytics provide insights into patient data, identifying patient preferences to facilitate personalized patient care and raise patient satisfaction.
In terms of patient consumerism and patient loyalty, patient behavior analytics has been linked to the patient financial journey, which relates to RCM. Advances in both patient and payer propensity-to-pay analytics and modeling have led to the development of customized patient payment plans that better align with a patient’s insurance allowances and true financial situation. An easy-to-use digital mobile experience for the patient to help navigate patient obligations also boosts patient satisfaction and the overall net promoter score (NPS) for the provider.
The role of AI and analytics in the US RCM market is significant, offering healthcare providers advantages that include increased operational efficiency and cost efficiency, reduced errors and greater patient satisfaction. As the healthcare industry continues to evolve, AI and analytics are likely to play an increasingly key role in managing revenue and patient satisfaction from initial contact to discharge and final payment.
Visit Wipro.com/AI to learn more about the latest in AI solutions, including Wipro ai360, which is helping enterprises harness the full potential of AI by integrating it seamlessly throughout the organization.
Puneet has over 23 years of experience working with large-scale hospitals, physician groups, durable medical equipment (DME) providers, and specialty pharmacy clients globally. He possesses a wealth of knowledge about the healthcare industry, particularly in the areas of business process management and revenue cycle management (RCM) services.
At Wipro, Puneet spearheads the creation and enhancement of cutting-edge solutions to address the unique challenges faced by healthcare providers. He plays a pivotal role in the development of Wipro's provider management solutions, streamlining processes and optimizing revenue cycles for clients, and his visionary approach and ability to anticipate industry trends contribute to the suite's ongoing success, enabling Wipro to stay at the forefront of innovation in the healthcare sector.