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Abstract:  The smooth functioning of the 
integration Kalman filter is vital to the 
performance of an ultra-tight integration 
system, as the integration filter not only 
provides error estimates of the inertial sensor 
measurements but also provides a Doppler 
feedback to the receiver tracking loops to 
mitigate dynamics on GPS signals.  The I (in-
phase) and Q (quadrature) measurements from 
the correlator which forms the input to the 
filter are highly non-linear, and therefore need 
to be linearised during the measurement update 
process.  From the derivations of I and Q 
signals, it can be seen that these quadrature 
measurements are related to phase and 
frequency errors.  Therefore, linearisation of 
these quadrature signals is carried out with 
respect to phase and frequency errors.  

The performance of the Kalman filter is 
primarily driven by the quality of the 
modelling strategies.  Any mis-modelling, 
either due to lack of statistical knowledge of 
the signal characteristics or due to improper 
assumptions, will cause the filter to diverge.  
Given the fact that the signals are highly non-
linear, modelling plays an important role in the 
design of the Kalman filter.  The number of 
states chosen for the filter is a trade-off 
between optimal performance and 
computational complexity.  Our analysis 
shows that a 17-state filter would suffice.  
Covariance analysis is performed to test the 
performance of the filter under various 
operating conditions.  In this paper, emphasis 
is placed on measurement update, which 
relates the measurements and states, as it is a 
unique characteristics compared with the loose 
and tight integration modes.  This paper also 
describes the pertinent mathematical 
relationships that are required to develop the 
measurement model.  Various trajectories with 
different dynamics are studied to evaluate the 
modelling effects.       
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1 Introduction 
 
The complementary advantages of Global 
Positioning System (GPS)/Pseudolites (PL) 
and Inertial Navigation System (INS) sensors 
overcoming each other’s limitations have been 
the primary motivation for the integration of 
these systems.  Since their inception in the 
early 1980’s, the GPS/INS integrated system 
has undergone major changes in integration 
architectures, algorithms, real-time 
implementations, hardware/software, etc.  
Market studies reveal that the major revenues 
for Satellite Based Navigation Systems, such 
as GPS, GLONASS and the upcoming 
GALILEO, will be primarily from the 
commercial sector (Rizos, 2005).  This is due 
to the proliferation of applications such as LBS 
(Location Based Services) and Telematics.  
Though Network Based Positioning 
Techniques can augment Satellite Based 
Systems, nevertheless the infrastructure 
requirements for this are quite high.  Therefore 
low-cost INSs are seen as an alternative which 
can augmentSatellite Based Systems to provide 
robust positioning (Titterton & Weston, 1997).  
In addition, the improved performance of the 
presently used GPS/INS architectures in non-
benign environments have popularised their 
use in both commercial and defence 
applications.      

Considering GPS and INS as two 
independent navigation systems and 
integrating their positions externally in a 
Kalman filter is defined as the loosely-coupled 
mode.  Two Kalman filters are used in a 
cascaded fashion in this type of system – a 
navigation filter inside the GPS receiver, and 
the integration Kalman filter which combines 
both the GPS and INS outputs.  Usually, the 
covariance knowledge of the navigation filter 
is not provided to the external integration 
Kalman filter.  This lack of knowledge results 
in sub-optimal performance.  The other 
disadvantage of such a system is that as GPS is 
treated as a navigation system, a minimum of 4 
satellites should be tracked by the receiver to 
provide the coordinate/velocity inputs to the 
integration Kalman filter.  To improve upon 
this, the tight integration mode was developed, 



which combines INS data with GPS pseudo-
ranges or carrier phases (Sennott, 1997; 
Sennott, 1999).  The biggest advantage of this 
system is that it uses only one Kalman filter, 
which improves the system performance 
greatly.  Moreover, GPS is treated as a sensor 
rather than a closed navigation system, and 
therefore this system can even provide 
navigation outputs even with less than 4 
tracked satellites (Brown & Hwang, 1997).  
But, as navigation systems are increasingly 
subjected to non-benign environments where 
higher performance is required, designers have 
conceived of the ultra-tight integration mode.  
In such a system, the GPS measurements I (in-
phase) and Q (quadrature) from the GPS 
correlator are integrated with the INS 
measurements (Alban et. al, 2003; Kreye et. al, 
2002; Poh et. al, 2000; Kim et. al, 2003).  
What make this mode more attractive than the 
previous two architectures are the manifold 
advantages it can provide, such as Jamming to 
Signal (J/S) ratio improvement, mitigating RF 
interference, improving GPS measurement 
accuracy, reducing non-coherent integration 
period in weak-signal GPS processing and 
others.  These advantages, in addition to the 
increasing demands of critical applications, 
have made such system architecture attractive.          

An ultra-tight system derives its benefits 
primarily from the INS-derived Doppler 
feedback to the receiver carrier tracking loops.  
This derived Doppler signal, which closely 
reflects the Doppler (caused due to relative 
motion between satellite and receiver) on the 
GPS signals, when integrated with the tracking 
loop removes the Doppler from the GPS 
signals, thereby facilitating a significant 
reduction in the carrier tracking bandwidth, i.e. 
from about 12 to 18Hz to about 1 to 3Hz 
depending on the oscillator’s accuracy. Unlike 
a stand-alone GPS receiver where individual 
channels are controlled within the correlator, in 
an ultra-tight integrated system the loops are 
closed by the integration Kalman filter (Beser 
et. al, 2003).  A centralised Kalman filter or a 
federated Kalman filter structure can be 
adopted for integration.  Though having a 
single Kalman filter reduces the modelling 
complexity, nevertheless, the higher update 
requirements make this unattractive for real-
time implementation.     

The measurement update of the Kalman 
filter requires a relationship to be established 
between the states and measurements.  
Therefore, in an ultra-tightly integrated system 
the relationship between GPS measurements, I 

and Q, and INS data, position, velocity and 
attitude, needs to be established.  It is not as 
straightforward as in the case of loosely and 
tightly integrated systems.  This paper shows 
that they are related through phase and 
frequency errors which are extracted from the 
tracking loops of the receiver.  The 
implementation of these mathematical 
relationships in real-time in addition to two 
levels of synchronisation, one at the integration 
level and the other at Doppler synchronisation 
at the tracking loops, makes this system 
complex.  Normally, the Kalman filter update 
rate is 1 to 10Hz, whereas in an ultra-tight 
system as the measurements from the 
correlator come at rates of 1000Hz the 
implementation of Kalman filter can be done 
in two ways – run the Kalman filter at the 
same rate as the measurements which demands 
high computational power or decimate the 
measurements to lower rates.  For our 
simulation experiments, a 17-state Kalman 
filter is chosen which runs at 100Hz.  A 
Software GPS receiver is used to generate the I 
and Q measurements, and an INS Matlab 
toolbox is used to generate the inertial 
measurements.  A dynamic trajectory is chosen 
to test the performance of the ultra-tight 
Kalman filter and the results show good 
performance.   
 
2 Ultra-tight Integration 

Measurements 
 
The GPS correlator processes the digitised IF 
signals to generate the 50Hz navigation data.  
There are two loops that work in tandem to do 
this process – the carrier loop which locks on 
to the incoming carrier frequency and 
measures the apparent Doppler shift of the 
signal, either using a FLL or PLL or a 
combination of both, and the code loop which 
normally is a DLL (that compares the 
incoming spreading code with three versions 
of a locally generated code to determine the 
correlation peak, (Tsui, 2000; Ward, 1998).  
The functions performed by both these loops 
are generally referred to as Carrier or Doppler 
wipe-off and code wipe-off.  Mixing the 
incoming composite signal with the locally 
generated signals and integrating them over the 
pre-detection interval period yields the I and Q 
measurements.  These measurements are used 
in the discriminator algorithms to generate the 
corrections to the carrier and code NCO’s to 
align to the incoming signal. 

 
 
 
 



Fig. 1 Correlator Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 shows the architecture of a typical 
correlator used in a GPS receiver.  For a 
detailed explanation the reader is referred to 
(Kaplan, 1996).  The I and Q signals generated 
by the carrier mixers are converted to 

, ,E P LI (in-phase early, prompt and late) and 

, ,E P LQ (quadrature early, prompt and late) by 
the code mixers, which are subsequently 
integrated over the pre-detection interval.  
These signals are then processed by the various 
discriminator algorithms of the FLL, PLL and 
DLL to generate the code and carrier NCO 
corrections.   
 
 
2.1 Kalman Filter Measurements 
 
In a conventional receiver, the function of the I 
and Q signals is to determine the NCO 
corrections, and to compute the signal power 

2 2I Q+ to determine in which loop, i.e. FLL, 
PLL, wideband / narrowband DLL, the 
receiver should operate.  But, in ultra-tight 
integration these measurements also calibrate 
the inertial sensor errors once the relationship 
with position, velocity is established.  In the 
steady-state condition, the measurements 

PI (in-phase early) and PQ  (quadrature early) 
become the input to the integration Kalman 
filter.  Let ŵ and φ̂ be the local estimates of the 
receiver, k be the measurement epoch, and 
T be the integration interval.  As mentioned in 
the previous section, multiplying the local 
carrier estimate with the incoming signal and 
integrating across the pre-detection interval 
yields the quadrature signals: 
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Expanding these equations and averaging them 
over the integration period yields (Sennott, 
1992): 
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where E [I] and E [Q] are the expectations of 
the I and Q measurements respectively, A is 
the amplitude of the signal, ew is the frequency 
error between the measured and estimated 
signals, eϕ  is the phase error between the 
measured and estimated signals.  The I and Q 
signals of the four different PRN codes, 4, 6, 7, 
10, which are used as input to the Kalman 
filter, are simulated as shown in Figure 2. 
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Fig. 2 Kalman filter measurements for Ultra-tight integration 
 

(a) I (in-phase) signal from Correlator 
 
 

 
(b) Q (quadrature) signal from Correlator 

 
2.1 States – Measurement Relationship 
 
Both the code and carrier loops need to be 
synchronised with the incoming signal to 
produce the navigation data.  A threshold 
based on the dynamics and signal-to-noise 
ratios is set to determine if the loops are locked 
or not.  Under normal conditions the loops 
operate in the steady-state condition, indicating 
that the errors generated by the loops are 
within the limits.  However, under high 
dynamic conditions, such as high accelerations 
and jerks, the loops may not be able to track 
the incoming signal due to the transients (Cahn 
et. al, 1977; Jwo, 2001).  In other words, the 
loop filter’s bandwidth may not be sufficient to 
be able to track the sudden changes in the 
Doppler frequency.  To reduce the phase and 
frequency errors and maintain the loops in 
lock, generally, there are  
 
 

 
 
two options – increase the tracking bandwidth 
(which will degrade the raw measurement 
accuracy), or aid the tracking loops using 
external signals/measurements from an INS.  
INS-aiding is optimal in that it reduces the 
dynamic stress, and at the same time 
improving the accuracy of the measurements.   

In this integration technique, the phase and 
frequency errors are the variables that establish 
the relationship between the states and 
measurements in the integration Kalman filter.   
In equation, ˆ ˆ' 'e ew w w andϕ ϕ ϕ= − = − are the 
frequencies and phase errors respectively.  
These errors are initially determined from the 
apriori knowledge but eventually reach a 
steady-state.         
 
 
 



  Fig. 3.  Ultra-tight receiver tracking loop                     Fig. 4. Stand-alone receiver tracking loop 
              Carrier tracking BW= 3 Hz      Carrier tracking BW = 13Hz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 3 and 4 show the frequency and phase 
errors for both the ultra-tight and stand-alone 
systems.  It can be observed that while the 
ultra-tightly integrated system can track the 
signals with a bandwidth of 3Hz, the stand-
alone receiver could not even track the signals 
with bandwidth of 13Hz, and the loops 
remained in the FLL mode and never entered 
the PLL mode.  These frequency and phase 
errors, which are the ‘linking’ variables 
between the correlator measurements I and Q, 
and INS variables, position, velocity, are 
defined as:      
 

e e
ww V
c

=                          (3) 

 

[ ]e e e
w X V t
c

ϕ −
= −                (4) 

 
where 2w fπ= is the angular frequency, c is 
the velocity of light, eV  is the velocity error 
vector between the measured and estimated 

values, and eX  is the position error vector 
between the measured and estimated values.   
Under steady-state tracking conditions, i.e. 
when thresholdw ee ≤φ, , the magnitude of 
I increases and the magnitude of Q decreases.  
Having defined the relationships between the I 
and Q, phase and frequency errors, position, 
velocity, it is now straightforward to relate 
these using the following expressions: 
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Equations (5) and (6) establish the 
fundamental relationship between I, Q and P, 
V.   
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3 Ultra-tight Kalman filter Architecture 
 
The complementary Kalman filter structure for the ultra-tightly integrated system is shown in Figure 5 
 
Fig. 5 Ultra-tight integration Kalman filter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figure 5, the correlator 
measurements are processed with the INS 
predicted measurements in the integration 
Kalman filter to generate the inertial error 
estimates to correct the raw INS data.  There 
are two update steps in the Kalman filter: 
measurement and state update.  As the 
system’s apriori knowledge is usually 
unknown at the start of the process, the mean 
of the state estimate xt0   and covariance matrix 
P(0) is initialised to zero, i.e. 0]0[ =txE and 

0 0[ ] (0)T
t tE x x P=  are assumed. (0)P  is a 

diagonal matrix corresponding to the ‘error 
state variances’ of each state.   

The dynamics of any linear time invariant 
system can be given as: 
 

ε+= Axx  Process Model              (7) 
vHxz +=  Measurement Model      (8) 

 
Where x  is the state vector, A  is the system 
matrix, H is the measurement matrix, z  is the 
measurement vector, and ε  and v  refer to the 
process and measurement noises respectively.  
A 17-state Kalman filter is chosen for our 
studies.  
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The 17 states are: 3 inertial error states each 
in position, velocity, attitude, accelerometer 
bias, gyro bias, 1 state each for clock bias and 
drift.  The measurements presented to the 
complimentary filter are: 
 
 z = {INS predicted measurements} –  
                               {GPS measurements} 
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where dQdI ,  are the deviations in the INS 
predicted Ipred and Qpred  measurements caused 
by the inertial sensor errors, and QI ηη ,  are 
the quadrature noise components in the GPS 
IGPS and QGPS measurements respectively. 
Suffix ‘i’ in equation (11) represents the 
number of channels tracked.  The predicted 
INS measurements are derived from the 
knowledge of the current INS position and 
velocity. The equations pertaining to this were 
introduced in the previous sections.   
 
3.1 Process Model 
 
To start the Kalman filter, the process and 
measurement models need to be defined.  In 
equation (7), the dynamics matrix A is defined 
using terrestrial psi-angle error model (Bar-
Itzhack, 1988; Wang et al., 2001): 
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where dr  is the position error vector, dv  is 
the velocity error vector, ψd  is the attitude 
error vector, ρ  is the true frame rate with 
respect to the Earth, Ω is the Earth rate vector, 
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w is the true coordinate system angular rate 
with respect to the inertial frame, ∇  is the 
accelerometer error vector, f  is the specific 
force vector, and ε  is the gyro drift rate 
vector.   
 
 
3.2 Measurement Model 
 
The measurement model H is given as (Babu 
& Wang, 2005): 
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where ‘n’ is the number of satellites visible 
and 
 
 
 
 
and                                           
 
 
 
 

The H matrix is updated during the 
measurement update process.  The product of 
the predicted states and the H matrix are then 
differenced with the GPS measurements, and 
weighted by the Kalman gain to generate the 
inertial error estimates.   
 
4 Simulation Experiments 
 
Simulation experiments were performed to test 
the performance of the filter.  From a constant 
velocity trajectory of 100m/s, the GPS and INS 
measurements were extracted and fed into the 
Kalman filter.  The update rate of the filter is 
10Hz.  Using a Matlab-based Software 
Receiver, the I and Q signals for 4 channels, 
PRN 4, 6, 7, 10, as shown in Figure 2, were 
derived.  A INS Matlab toolbox generated the 
inertial sensor measurements.  The U-D 
covariance factorisation algorithm was used to 
ensure the positive-definiteness of the 
covariance matrix P.  To reduce the 
computational burden, the scalar update 
method was followed.  The Kalman filter was 
run for 1000 seconds and the error estimates 
between the reference and the estimated 
trajectories are plotted in Figures 6 and 7.       

 
 
 
Fig. 6 Attitude Error Estimates 
 

 
 
 
As Figure 6 shows, there is a bias in the 
position estimates which may be due to 
synchronisation and modelling errors.  
However, the bias is bounded, which is critical 

for the stability of the filter.  The attitude 
errors also show consistency.  Figures 8, 9 & 
10 show the accuracies for the gyro bias, the 
accelerometer bias and position estimates.
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Fig. 7 Position Error Estimates 

Fig. 8 Covariance of Gyro bias 

Fig. 9 Covariance of Acc. bias 
 
 

 
 
 



Fig. 10 Covariance of position 

 
5 Concluding Remarks 
 
One of the complexities of an ultra-tight 
integration system is the Kalman filter 
implementation.  Unlike loosely and tightly 
integrated systems, the mathematical 
relationships that relate the states and 
measurements are complex.  The states and 
measurements are related through the phase 
and frequency errors extracted from the 
receiver tracking loops.  This paper describes 
these relationships, which are critical to the 
understanding of the system.  The tracking 
performance of a stand-alone and ultra-tight 
GPS receiver illustrates the advantages of the 
ultra-tight system under dynamic conditions.  
It is shown that the ultra-tight integration 
receiver with a carrier tracking bandwidth of 
3Hz operates in the PLL mode even under high 
dynamic conditions. The error estimates and 
the covariance analysis have shown that the 
system’s performance is encouraging. 
However, these are only preliminary results 
and optimisation is still required in the 
modelling of the various parameters of the 
filter.  With rapidly evolving low-cost inertial 
sensors and low-cost GPS receivers, ultra-
tightly integrated systems may be poised to 
capture commercial and defence markets.   
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